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With ever brighter light sources, fast parallel detectors, and advances in phase retrieval methods,
one can process experimental “imaging by diffraction” data to produce sharp images. Additionally,
augmenting these techologies with high-throughput processing can enable close to real-time feed-
back to microscopists. Together, these advances allow rapid images across a range of macroscopic
dimensions, through different energies, and time evolution at x-ray wavelength resolution. Here, we
introduce set of algorithmic and computational methodologies, packaged as an open source software
suite, aimed at throughput and resolution for the coming diffraction limited light source era.

I. INTRODUCTION

The reconstruction of a scattering potential from
measurements of scattered intensity in the far-field
has occupied scientists and applied mathematicians
for over a century, and arises in fields as varied
as optics1,2, astronomy3, X-ray crystallography4,
tomographic imaging5, holography6,7, electron
microscopy8 and particle scattering generally. Nu-
merous experimental techniques that employ forms of
interferometric/holographic6,7 measurements, gratings9,
and other phase mechanisms like random phase masks,
sparsity structure, etc10–17 to help overcome the problem
of phase-less measurements have been proposed over the
years18–20.

Progress has been made in solving the phase prob-
lem for a single diffraction pattern recorded from a non-
periodic object21–25. Such methods, referred to as co-
herent diffractive imaging (CDI), attempt to recover the
complete complex-valued wave scattered from the object,
giving phase contrast and a way to overcome depth-of-
focus limitations of regular optical systems.

More recently an experimental technique has emerged
that enables to image what no-one was able to see before:
macroscopic specimens in 3D at wavelength (i.e. poten-
tially atomic) resolution, with chemical state specificity.
Initially proposed in 196927–31 to improve the resolution
in electron or x-ray microscopy by combining microscopy
with scattering measurements, ptychography has shown
to be a remarkably robust technique for the characteri-
zation of nano materials27,32–54.

Ptychography enables one to build up very large im-
ages at wavelength resolution (i.e. potentially atomic)
by combining the large field of view of a high precision
scanning microscope system with the resolution enabled
by diffraction measurements. Experimentally, ptychog-
raphy works by retrofitting a scanning microscope with
a parallel detector. In a scanning microscope, a small
beam is focused onto the sample via a lens, and the
transmission is measured in a single- element detector.
The image is built up by plotting the transmission as a
function of the sample position as it is rastered across

the beam, and the resolution of the image is given by
the beam size. In ptychography, one replaces the single
element detector with a two-dimensional array detector
such as a CCD and measures the intensity distribution
at many scattering angles, much like a radar detector
system for the microscopic world. Each recorded diffrac-
tion pattern contains short-spatial Fourier frequency in-
formation about features that are smaller than the x-ray
beam-size, enabling higher resolution. At short wave-
lengths, however, it is only possible to measure the in-
tensity of the diffracted light. To reconstruct an image
of the object, one needs to retrieve the phase, made even
more challenging in the presence of noise, experimen-
tal uncertainties, and perturbations of the experimen-
tal geometry. Since the reconstruction of ptychographic
data is a non-linear problem, there are still many open
questions26, nevertheless the phase retrieval problem is
made tractable by recording multiple diffraction patterns
from the same region of the object, compensating phase-
less information with a redundant set of measurements.
Data redundancy enables one to handle experimental un-
certainties as well. Methods to work with unknown illu-
minations or “lens” were proposed35–37,39,55. They are
now used to calibrate high quality x-ray optics40–42, x-
ray lasers56 and space telescopes57. Several strategies,
such as Alternating Directions58, projections, gradient,
conjugate gradient, Newton59, spectral methods26,49,60,
and Monte-carlo43, have been proposed to handle sit-
uations when both sample and illumination function,
positions, are unknown parameters in high dimensions,
and to handle experimental situations such as partial
coherence, background, averaging during flying scans,
vibrations43–47,59–66

Here we describe an algorithm approach and open soft-
ware suite “sharp” (Scalable Hetereogeneous Adaptive
Real-time Ptychography) that enables high throughput
streaming analysis using computationally efficient phase
retrieval algorithms and distributed computational back-
end. The high performance computational back-end is
hidden from the microscopist, but can be accessed and
adapted to particular needs by using a python interface
or by modifying the source code.
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FIG. 1. Experimental geometry in ptychography: an un-
known sample with transmission ψ(r) is rastered through an
illuminating beam ω(r), and a sequence of diffraction mea-
surements I(i) = |a(i)|2 are recorded on an area detector as
the sample is rastered around. Each set of pixel coordinates
on a detector placed at a distance zD from the sample is
pi,j,zD = (pix̂ + pj ŷ + zDẑ), where pi,j denote the pixel co-
ordinates and x̂, ŷ the axes of the detector. The detector
coordinates pi,j,zD are related to coordinates qi,j by qi,j =

kout − kin = 1
λ

(
(pi,pj ,zD)√
p2i+p

2
j+z

2
D
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)
, ' 1

λzD
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kin and kout are the incident and scattered wave vectors that
satisfy |kin| = |kout| = k = 1/λ, where λ is the wavelength
of the x-ray. The direction of kin and kout are the same as
the direction of the incident beam kin = (0, 0, k) and the out-
going beam kout = kp̂i,j,zD . The diffracted photon flux I
(photons/pulse/ pixel) produced by a sample illuminated by
x-rays is given by Idata(q) = Jor

2
eP∆Ω |Fq←rE (r)|2 , where

Jo is the incident photon flux density (photons/pulse/area),
r2e is the electron cross section, P is a polarization multiplica-
tive factor, ∆Ω is the solid angle subtended by a detector pixel
at the sample, E(q) is a complex scalar wavefield transmitted
by the sample, and F is a Fourier transform operation. The
point-wise product between illuminating function and sam-
ple, z(i)(r) := ω(r)ψ(r + xi), is related to the measurement

by a Fourier magnitude relationship I(i) = a2(i) =
∣∣Fz(i)

∣∣226.

An intuitive graphical user interface provides visual
feedback of the diffraction data and reconstructed im-
ages, while data is added to the solver or as iterations
progress over time. Our software is modular and pro-
vides several interfaces, remote visualization, and the file
I/O needed to handle the needs of different microscopes,
off-line analysis, benchmarking or end-to-end experimen-
tal simulations. We use a standard cxi file format67 for
file input output operations, and standard open source
libraries and formats for streaming frames and images
across multiple modules.

II. ALGORITHMS

In a ptychography experiment (see Fig. 1), one per-
forms a series of diffraction measurement as a sample
is rastered across an x-ray beam. The illumination is
formed by an x-ray optic such as a zone-plate. The mea-

surement is performed by briefly exposing an area detec-
tor such as a CCD which discretizes the charges accumu-
lated over a square pixel.

In a discrete setting, a two-dimensional small beam
with distribution w(r) of dimension mx×my illuminates
a subregion centered at x(i) (referred to as frame) of an
unknown object of interest ψ of dimension nx×ny. Here
0 < m < n, i = 1, . . . , k, k is the number of frames, r =
λpm
zd

is a lengthscale ( the diffraction limited resolution

of the microscope, see Fig. 1 for the definition), and:

r = (rµ, rν) , µ, ν ∈ {0, . . . ,m− 1},
x(i) = (rµ′, rν′) , µ′, ν′ ∈ {0, . . . , n−m}.

As x(i) is rastered on a typically coarser grid, r + x(i)

spans a finer grid of dimension n × n. Here for sim-
plicity we consider square matrices. Generalization to
non-square matrices is straightforward but requires more
indices and complicates notation.

In other words, we assume that a sequence of k diffrac-
tion intensity patterns I(i)(q) are collected as the posi-
tion of the object is rastered on the position x(i). The

simple transform a(i) =
√
I(i)(q) is a variance stabilizing

transform for Poisson noise68,69. The relationship among
the amplitude a(i), the illumination function w and an

unknown object ψ̂ to be estimated can be expressed as
follows:

a(i)(q) =
∣∣∣Fw(r)ψ̂(r + x(i))

∣∣∣ ,
(Ff)(q) =

∑
r

eiq·rf(r),

q =
(

2π
mrµ,

2π
mrν

)
, µ, ν ∈ {0, . . . ,m− 1}. (1)

where the sum over r is given on all the indices m×m of
r, and F is the two-dimensional discrete Fourier trans-
form. The relationship in Fig. (1) relates the pixel co-
ordinates on the detector (pi, pj , zD), the sampling co-
ordinate q, and the length-scale r that maps the sam-
ple positions x to coordinates on a discretized image
ψ. The Fourier transform relationship is valid under Far
Field and paraxial approximation, and small illumination
(”oversampling” condition), which is the focus of the cur-
rent release of sharp. For experimental geometries such
as Near Field, “Fresnel”, Fourier ptychography, through-
focus, partially coherent, multiplexed, geometries50,52–54

one can substitute the simple Fourier transform with the
appropriate propagator60. Weighting factors to account
for noisy pixel will be added in a future release59.

We denote the illumination operator Q(i), i =
1, 2, · · · , k, associated with x(i) that extracts a frame z(i)

out of ψ̂, and scales the frame point-wise by the illumi-
nation function w(r) (see Fig. 1):

Q(i)[ψ](r) = w(r)ψ(r + x(i)),

= w(r)T(i)[ψ](r),

= z(i)(r)
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where z(i) represents the frames extracted from ψ and
multiplied by the illumination w(r), and T(i) is the oper-
ator that extracts a frame out of an image. With this op-
erator, the relationship between an unknown discretized
object ψ , and the diffraction measurements a(i) collected
in a ptychography experiment (see figure 1) can be rep-
resented compactly as:

a = |FQψ∨|, or

{
a = |Fz|,
z = Qψ∨,

(2)

Eq. (2) can be expressed as:

a∈RKm2 a(1)

...
a(K)

 =

∣∣∣∣∣∣∣∣∣∣∣∣

F∈CKm2×Km2 F . . . 0
...

. . .
...

0 . . . F


z∈CKm2 z(1)

...
z(K)


∣∣∣∣∣∣∣∣∣∣∣∣
, (3)

z∈CKm2 z(1)

...
z(K)

 =

Q∈CKm2×n2
, diag(w)T(1)

...
diag(w)T(K)


ψ∈Cn2 ψ1

...
ψn2

 . (4)

where z are K frames extracted from the object ψ and
multiplied by the illumination function w, and F is the
associated 2D DFT matrix when we write everything in
the stacked form60. When both the sample and the illu-
mination are unknown, we can express the relationship
(Eq. 4) between the image ψ, the illumination w, and
the frames z in two forms:

z = Qψ = diag(Sw)Tψ = diag(Tψ)Sw (5)

where S ∈ RKm2×m2

denotes the operator that replicates
the illumination w into K stack of frames, since Qψ =
diag(Sw)Tψ is the entry-wise product of Tψ and Sw.
Eq. (5) can be used to find ψ or w from z and the other
variable.

A. Phase retrieval

A typical reconstruction on SHARP uses the following
sequence:

1. Input data I(q), translations x. Optional inputs:

initial image ψ(0), illumination w(0), and other con-
straints such as illumination Fourier mask.

2. Initialize illumination, image, and build up Q, Q∗, and
(Q∗Q)−1, and frames z(0) = Qψ(0);

3. Update the frames z according to70 using projector
operators defined in (Eqs. (6,7)) below:

z(l) := [2βPQPa + (1− 2β)βPa + β(PQ − I)]z(l−1),

where β ∈ (0.5, 1] is a scalar factor set by the user.

4. Update illumination w(`), and image ψ(`) using (Eqs.
(9, 8)), and additional constraints such as a Fourier low
pass or band pass binary filter, or a real space mask.

5. Optional: optimize static background and remove it in
the iteration as described in60

6. Iterate to 3 until maximum iteration or target is
achieved, and return ψ(`) and w.

Projection operators form the basis of every iterative
projection and projected gradient algorithms and are im-
plemented in sharp and accessible through a library.
The projection Pa ensures that the frames z match the
experiment, that is, they satisfy Eq. (3), and is referred
to as data projector:

Paz = F∗
Fz

|Fz|
a (6)

while the projection PQ onto the range of Q (see Fig. 2):

PQ = Q(Q∗Q)−1Q∗ (7)

ensures that overlapping frames z are consistent with
each other and satisfy Eq. (4).

The projector Pa is relatively robust to Poisson noise68,
but weighting factors to account for noisy pixels can be
easily added59.

Using relationship (5), we can update the image ψ from
w and frames z:

ψ ←Q∗z
Q∗Q (8)

or the illumination w from an image ψ and frames z36,37:

w ←S∗diag(Tψ̄)z(l)

S∗T|ψ|2 , (9)

The metrics εF , εq used to monitor progress are the
normalized mean square root error (nmse) from the cor-
responding projections z:

εa (z) = ‖[Pa−I]z‖
‖a‖ ,

εQ (z) =
‖[PQ−I]z‖
‖a‖

where I is the identity operator. This has to be compared

to ε0, the error w.r.t the known solution ψ̂:

ε0 (z) = 1
‖a‖min

ϕ

∥∥∥eiϕz −Qψ̂
∥∥∥,

ε′0 (z) = 1
‖Q∗Qψ‖min

ϕ

∥∥∥eiϕQ∗z −Q∗Qψ̂
∥∥∥,

ε′0 (ψ) = 1
‖Q∗Qψ‖min

ϕ

∥∥∥Q∗Q(eiϕψ − ψ̂)
∥∥∥,

where ϕ is an arbitrary global phase factor.
The initial values for the input data and translations

can either be loaded from file or set by a python inter-
face. The starting “zero-th” initial image is either loaded
from file, set to a random image, or taken as a constant
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Q(i)ψ z(i)(r) = w(r)ψ(r + x(i))
ψ(i) = Q∗(i)z(i) ψ(r + x(i)) = w∗(r)z(i)(r)

Q∗z
∑

xk+rk=l
conj(w(rk))z(i)(rk)

eTl Q
∗Qek

∑
xk+rk=l

|w(rk)|2δl,k
Pa(i)z(i)

∑
q e
−iq·r

∑
r e

iq·rz(i)(r)

|
∑

r e
iq·rz(i)(r)|

a(i)

TABLE I. Linear algebra notation. Here el is the unit n × 1
vector with the l-th entry 1 and δ is the Kronecker delta.
The division is understood as an element-wise operation. The
operator Pa(i) is defined in Eq.(6)

FIG. 2. To achieve the highest possible throughput and
scalability one has to parallelize across multiple GPUs. As
most ptychographic scans use a constant density of scan point
across the object, we expect to be able to achieve a very even
division, resulting in good load balancing. SHARP essentially
enforces an overlap constraint between the images produced
by each of the GPUs, and also enforces that the illumination
recovered on each GPU agree with eachother. This is done
by default is done at every iteration.

image using flags. To achieve high performance, one has
to compute the product of several linear operators (Q, F,
S, Q∗, F∗, S∗) on a set of frames z, an image ψ and an
illumination w several times. We use a distributed GPU
architecture across multiple nodes for this task (Fig. 2).
Fourier transform operators F, and F∗ are computation-
ally intesive but also easily parallelized. To extract mul-
tiple frames out of an image (Qψ) we initially decompose
the translations and corresponding frames onto multiple
nodes in a regular grid. To add up all the frames onto
an image ( Q∗z) or updating the illumination S∗ require
a reduction within each GPU and communication across
nodes using MPI. The frequency of communication can
be adjusted.

III. APPLICATIONS AND PERFORMANCE

SHARP enables high-throughput streaming analy-
sis using computationally efficient phase retrieval algo-
rithms. In this section we describe a typical dataset
and sample that can be collected in less than 1 minute
at the ALS, and the computational backend to provide
fast feedback to the microscopist. To characterize our
performance, we use both simulations and experimen-
tal data. We use simulations to compare convergence of
the reconstruction algorithm to the “true solution”and
characterize the effect of different light sources, contrast,
scale, noise, detectors or samples for which no data exist
yet. Experimental data from ALS used to characterize
battery materials, green cement, at different wavelengths
and orientation has been successfully reconstructed71–75

using the software described in this article. In a stream-
ing example we describe a front-end that operates very
close to the actual experiment, while the backends runs
remotely on a GPU/CPU cluster.

A. Simulations and performance

As a demonstration, we start from a sample was com-
posed of colloidal gold 50 nm and 10 nm nanoparticles
deposited on a transparent silicon nitrade membrane. An
experimental image was obtained by scanning electron
microscopy which provides high resolution and contrast
but can only view the surface of the sample. We simu-
late a complex transmission function by scaling the image
amplitude from 0 to 50 nm thickness, and using the com-
plex index of refraction of Gold at 750 eV energy from
[henke.lbl.gov]. The illumination is generated by zone-
plate diameter of 220 microns, 60 nm outer zone width,
discretized with (128×128) pixels in the far field.

Convergence to single precision numerical accuracy for
a typical scan of 10,000 frames, is achieved in less than 2
seconds (see Fig. 3).

B. Experimental example

Figure 4 shows ptychographic reconstructions of a
dataset generated from a sample consisting of gold balls
with diameters of 50 and 10 nm. The data were generated
using x-rays with energy of 750 eV at beamline 5.3.2.1
of the Advanced Light Source with exposure times of 1
second and a square scan grid with 40 nm spacing. The
details of data acquisition and processing prior to recon-
struction are reported elsewhere76. The reconstructions
consisted of 300 iterations of the RAAR algorithm with
a probe retrieval and background retrieval step every
other iteration while global synchronizations were per-
formed every iteration. We note that both the phase and
amplitude reconstruct with high signal-to-noise ratio, an
advantage enabled by high stability soft x-ray scanning
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FIG. 3. Timing to process 10,000 frames of dimension 128×
128 extracted from an image of 1000×1000 as a function of the
number of nodes. Reconstruction (ε′0 < 5e− 4) is achieved
in under 2 seconds using a cluster of 4 nodes with 4 GTX
Titan GPU per node. Similar performance can be expected
in a single node using newer GPUs. Timing contributions for
corresponding computational kernels are (Q∗Q)−1Q∗ 30 %,
F,F∗ 20 %, Q 20 %, S 5 %, elementwise operations 20 %, and
residual calculation 5 %.

FIG. 4. Reconstruction of a test sample consisting of gold
balls with diameters of 50 and 10 nm. A) Phase image gen-
erated by SHARP using the probe retrieval algorithm, back-
ground retrieval algorithm, and the Fourier mask applied to
the probe. The red arrow points to a collection of 50 nm balls
while the blue arrow points to a collection of 10 nm balls. The
pixel size is 10 nm. B) Same as (A) except with the Fourier
mask on the probe turned off. C) Same as (A) except with
the background retrieval algorithm turned off.

FIG. 5. Graphical User Interface (GUI) for the streaming
pipeline. As soon as deata frames are recorded by the CCD
camera, the different components in the pipeline are sending
updates to the GUI.

transmission microscopes, and that features at the single
pixel level are apparent.

C. Interface and Streaming

Common processing pipelines used for ptychographic
experiments usually have a series of I/O operations and
many different components involved. With the stream-
ing pipeline, all components are connected, which allows
users to monitor and quickly act upon changes along the
experimental and computional pipeline.

A new run is triggered based on the user-defined set-
tings for data aquisiton and processing using a Graphical
User Interface (Fig. 5). The GUI allows the user to stop
and restart the run (including the streaming pipeline)
at any given time, and also provides different saving
schemes.

On the back-end side, the streaming infrastructure is
divided into a handler of 4 different workers address-
ing dark frames, diffraction frames, reduced and down-
sampled images and the ptychographic reconstruction
(SHARP) as shown in Figure 6. The handler connects
the back-end to the front-end and controls the communi-
cation and data flow among the different back-end work-
ers which all have different roles. The dark worker is ac-
cumulating dark frames providing statistical maps (mean
and variance) of the noise structure on the detector. Ev-
ery frame worker is transforming raw into clean diffrac-
tion frames. This involves a subtraction of the average
dark, filtering, photon counting and downsampling. De-
pending on the computing capacities of the back-end, it
is possible to run N frame workers simultaniously. The
image worker is reducing a collection of clean diffraction
frames, producing low-resolution STXM images and an
initial estimate of the illumination function. As soon as
clean diffraction frames are ready and a guess for the illu-
mination has been provided, the SHARP worker starts
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FIG. 6. Overview of the components involved in the software
structure of the streaming pipeline. In order to maximize the
performance of this streaming framework, the frontend oper-
ates very close to the actual experiment, while the backends
runs remotely on a powerful GPU/CPU cluster.

the iterative reconstruction process. SHARP initialize
and allocates space to hold all frames in a scan, compute
decomposition schemes, initializes the image and start
the reconstruction process. Unmeasured frames are re-
placed with diffraction from a transparent object until

new frames are accumulated.
Aside the GUI, the frontend consists of a worker grab-

bing frames from the detector, and an interface that
monitors network activity, experimental parameters (po-
sition, wavelenght, exposure, ...), and reconstruction. All
modules (workers) involved are running a non-blocking
event loop making sure data is being processed as fast as
possible.

IV. CONCLUSIONS

In this paper we described SHARP, an open source
software package for low latency feedback at ptycho-
graphic mircoscopes installed at the Advanced Light
Source. Our software provides a modular interface to
the high performance computational back-end which can
be adaptad to different needs. Fast throughput provides
near real time feedback to the microscopists and can be
used to build up high performance strategies for higher
dimensional analysis such as spectro-ptychography or
tomo-ptychography.
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